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1. Adaptive Genetic Algorithm 

 

1.1 Overview 

    Crystal structure prediction is one of the key components in new materials design and discovery 

and has been one of the long-standing challenges in the physical sciences. In recent years, many 

approaches have been proposed to solve this problem. 

    The adaptive genetic algorithm (AGA) is introduced to combine the speed of structure exploration 

by classical potentials with the accuracy of density functional theory calculations in an adaptive and 

iterative way. In this scheme, auxiliary classical potentials are employed to explore structural phase 

space while the low-energy structures are determined based on first-principles total energy calculations. 

     Parameters of the auxiliary potentials are adaptively adjusted to reproduce first-principles results 

during the course of the GA search, which allows the system to hop from one basin to another in the 

energy landscape, leading to efficient sampling of configuration space. While retain the accuracy of DFT, 

the adaptive GA is much faster than full DFT GA and offers a useful tool to study the structures of 

complex materials containing large number of atoms. 

 

1.2 Method 
[1]

 

    Crystal structure prediction starting from the chemical composition alone has been one of the 

long-standing challenges in theoretical solid state physics, chemistry, and materials science [2,3]. 

Progress in this area has become a pressing issue in the age of computational materials discovery and 

design. In the past two decades several computational methods have been proposed to tackle this 

problem. These methods include simulated annealing [4-6], genetic algorithm (GA) [7-14], basin (or 

minima) hopping [15,16], particle swarm optimization [17,18], and ab initio random structure search 

[19]. While there has been steady progress in predicting crystal structures of elementary crystals, oxides, 
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and binary alloys [9-14,17-19], exploration of complex binary, ternary, and quaternary systems has 

required more advanced algorithms for configuration space exploration and faster and also reliable 

methods for energy evaluation. While first-principles density functional theory (DFT) calculations offer 

accurate total energies, its computational cost imposes the bottleneck to the structure identification of 

complex materials with unit cells containing ~10
2
 atoms and/or with variable stoichiometries. By 

contrast, calculations based on classical potentials are fast and applicable to very large systems but are 

limited in accuracy. For various systems, reliable classical potentials are not even available. Our AGA 

combines the speed of classical potential searches and the accuracy of DFT calculations. It allows us to 

investigate crystal structures previously intractable by such methods with current computer capabilities.  

The flowchart of the AGA scheme is illustrated in Fig. 1. The traditional (regular) GA loop, i.e. 

left-hand side of the flowchart, is embedded in an adaptive loop. Optimization of offspring structures in 

the GA loop are performed using auxiliary classical potentials whose parameters are adjusted to 

reproduce DFT results obtained only in the adaptive loop. The GA is an optimization strategy inspired 

by the Darwinian evolutionary process and has been widely adopted for atomistic structure optimization 

in the last two decades [7-14]. During the GA optimization process, inheritance, mutation, selection, and 

crossover operations [7-14] are included to produce new structures and select most fit survivors from 

generation to generation. The most time-consuming step in the traditional GA-loop is the local 

optimization of new off-springs by DFT calculations. For complex structures, GA search usually iterates 

over 200 generations to converge. In the AGA scheme this most time-consuming step is performed using 

auxiliary classical potentials. In the AGA (see Fig. 1), single point DFT calculations are performed on a 

small set of candidate structures obtained in the GA loop using the auxiliary classical potentials. 

Energies, forces, and stresses of these structures from first-principles DFT calculations are used to 

update the parameters of the auxiliary classical potentials by force-matching method with stochastic 

simulated annealing algorithm as implemented in the potfit code [20,21]. Another cycle of GA search is 

performed using the newly adjusted potentials, followed by the re-adjustment of the potential parameters, 

and the process is then repeated – an adaptive-GA (AGA) iteration. All first-principles DFT calculations 

were performed using VASP [22,23] or Quantum-ESPRESSO [24], which has been interfaced with the 
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adaptive-GA scheme in a fully parallel manner.  

 

 

Fig. 1. Flowchart of the adaptive genetic algorithm.  

 

    The numbers of parent, Np, and off-spring structures, No, depend on the complexity of the system 

investigated. For those investigated here, 60 < No < 200, and the total number of structures optimized in 

each GA-cycle varied between ~12,000 to ~40,000. The use of classical auxiliary potentials for such 

structure relaxations reduced the computational load by approximately five to six orders of magnitude. It 

usually takes 30-50 adaptive-GA-iterations to obtain the final structures and the net computational time 

of the entire adaptive-GA search can be reduced by more than three orders of magnitude. Since the 

classical potentials are adjusted according to DFT results, the adaptive-GA can explore configuration 

space more effectively. Structures collected over all adaptive-GA iterations and a set of low-energy 
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metastable structures can be finally screened to locate the ground-state crystal structure. Therefore, the 

adaptive-GA can essentially search for structures almost with the efficiency of classical potentials but 

with DFT accuracy. 

 

 

Fig. 2. Structural and energetic evolution of TiO2 versus iteration number of the AGA-loop. EAM-type 

potentials were used in inner GA-loop. Plots show only DFT energies obtained at the end of each 

AGA-iteration.  

 

    We note that the commonly adopted approach of combining classical potentials with DFT 

calculations for structure optimization involves the use of a single set of classical potentials to screen all 

candidate structures followed by a refinement using DFT calculations. This requires accurate and 

transferable classical potentials able to capture the very-lowest (or few low) energy structures in a 

complex energy landscape. In contrast, from the energies of the final structures at each iteration as 

plotted in Fig 2, we can see that the adaptive-GA uses different adjusted potentials to sample structures 

located in different basins of the energy landscape. Each auxiliary classical potential may not just sample 

the structures in the same basin, it can sample the structures in a subset of the basins in the energy 

landscape and some of the basins may overlap with those from other potentials. Therefore adaptive GA 
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is not designed to fit transferable potentials for general atomistic simulations. It is very difficult or even 

impossible to fit a classical potential able to accurately describe a system under various bonding 

environments, especially for binary and ternary systems. However, it is possible to adjust auxiliary 

potentials to describe structures located within different subset of basins in the energy landscape with 

DFT accuracy. Adapted auxiliary potentials adjusted throughout the adaptive-GA iterations help the 

system to hop between basins and ensure efficient and accurate sampling of configuration space. An 

illustration of this point is the search for the crystal structure of TiO2 with Embedded-atom method 

(EAM) type potentials. We do not expect EAM potentials to describe well the energies of various TiO2 

polymorphs. However, as seen in Fig. 2, the adaptive-GA search for structures with 4 formula units (12 

atoms per unit cell) was able to find the two low-energy structures of TiO2, i.e., the rutile [25] and the 

anatase [26] structures – both with 6 atoms per primitive cell only – within 25 adaptive-GA-iterations.  

 

2. AGA code 

 

2.1 What AGA can do 

 

    Our AGA code/method can be used for the crystal structure prediction of complex materials starting 

from the chemical composition, such as the 3D (Crystal materials), 2D (Surfaces, Grain boundaries, 

Planar materials), 0D (Clusters) systems/cases, and can also be extended to the related systems/issues.  

    AGA has been successfully applied to study several systems including the oxides [1, 13], 

intermetallic compounds [1, 27], grain boundary [28], etc. It is not only good for the perfect crystal 

structure but also suitable for the material systems with defects.  
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2.2 License and Agreement 

Adaptive genetic algorithm code License 

Copyright © 2012; The Ames Laboratory, Iowa State University. All rights reserved. 

This software was authored by Min Ji, Xin Zhao, Shunqing Wu, Manh Cuong Nguyen, Feng Zhang, 

Cai-Zhuang Wang, and Kai-Ming Ho at The Ames Laboratory and was supported by the U.S. Department 

of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering 

Division. The Ames Laboratory is operated by Iowa State University for DOE under U.S. Government 

contract DE-AC02-07CH11358. The U.S. Government has the rights to use, reproduce, and distribute this 

software. NEITHER THE GOVERNMENT, THE AMES LABORATORY, NOR IOWA STATE 

UNIVERSITY MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY 

LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified to produce derivative works, 

such modified software should be clearly marked, so as to not confuse it with the version available from 

The Ames Laboratory. 

Additionally, redistribution and use in source and binary forms, with or without modification, are 

permitted provided that the following conditions are met: 

 Redistribution of source code must retain the above copyright notice, this list of conditions, and the 

following disclaimer. 

 Redistribution in binary form must reproduce the above copyright notice, this list of conditions, 

and the following disclaimer in the documentation and/or other materials provided with 

distribution. 

 Neither the name of The Ames Laboratory, Iowa State University, the U.S. Government, nor the 

names of its contributors may be used to endorse or promote products derived from this software 

without specific prior written permission. 

THIS SOFTWARE IS PROVIDED BY THE AMES LABORATORY, IOWA STATE UNIVERSITY, 

AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, 

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 

FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE GOVERNMENT, 

THE AMES LABORATORY, IOWA STATE UNIVERSITY, OR CONTRIBUTORS BE LIABLE FOR 

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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Agreement 

 

    A signed End-user License Agreement from the Ames Lab is required to use these codes, related 

scripts and subroutines. Redistributions of the Adaptive Genetic Algorithm code in source and/or binary 

forms, with or without modification, are prohibited without a written permission from the Authors. 

    Please contact aga@ameslab.gov or Dr. Cai-Zhuang Wang (wangcz@ameslab.gov) if you are 

interested in our AGA code. 

    Citations of the following references are recommended for any publications of the work using the 

Adaptive Genetic Algorithm code/method.  

S. Q. Wu, M. Ji, C. Z. Wang, M. C. Nguyen, X. Zhao, K. Umemoto, R. M. Wentzcovitch, and K. M. Ho, 

An adaptive genetic algorithm for crystal structure prediction. J. Phys.: Cond. Matter 26, 035402 

(2014). 

X. Zhao, M. C. Nguyen, W. Y. Zhang, C. Z. Wang, M. J. Kramer, D. J. Sellmyer, X. Z. Li, F. Zhang, L. 

Q. Ke, V. P. Antropov, and K. M. Ho, Exploring the Structural Complexity of Intermetallic 

Compounds by an Adaptive Genetic Algorithm. Phys. Rev. Lett. 112, 045502 (2014). 

X. Zhao, Q. Shu, M.C. Nguyen, Y.G. Wang, M. Ji, H.J. Xiang, K.M. Ho, X.G. Gong, C.Z. Wang, 

Interface Structure Prediction from First-Principles. J. Phys. Chem. C 2014, 118, 9524-9530 (2014). 

 

2.3 News 

 

    Our adaptive-GA scheme has be interfaced with different DFT codes, e.g. VASP [22,23] and/or 

Quantum-ESPRESSO [24] etc, in a fully parallel manner. In the first release version, only the interface 

with VASP is provided.  

 



10 

 

2.4 Installation 

 

To install AGA, please follow 3 steps: 

i.) LAMMPS installation 

Follow the LAMMPS instruction (or the following) to build it as a static library (*.a file).  

Type: 

Make  makelib 

Make  –f  Makefile.lib  foo 

where foo is the machine name. 

Note – For the most recent version of LAMMPS, a few packages will not be installed by default. 

Please make sure that package MEAM (in order to use the modified EAM potential) and RIGID (for the 

purpose of interface structure prediction) are installed.  

To check the package installation status of LAMMPS, type 

make  package-status 

After a successful installation, there ought to be a *.a file. 

ii.) GA installation 

Go to AGA/src/, and type make to build the GA code. 

Go to AGA/tools/, and type ./compile.sh to build the tools. 

Note – Links in the AGA/src/Makefile and AGA/tools/compile.sh should point to the correct directory 

in order to compile successfully. 
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iii.) POTFIT installation 

Compile the POTFIT following its instruction.  

(http://potfit.sourceforge.net/wiki/doku.php?id=compiling) 

Note: The function to write LAMMPS potential in the latest version of POTFIT has been reported to 

have some problem. The developer has made corrections on it. However, if the potential was found to 

have trouble, please contact us and we can provide a temporary solution to it.  

Meanwhile, more analytical functions are defined. Request can be made by contacting us if needed. 

 

To uninstall the GA code, go to AGA/src/ and type: make clean 

To uninstall the tools, go to AGA/tools/ and type: ./compile.sh clean 

 

  

http://potfit.sourceforge.net/wiki/doku.php?id=compiling
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2.5 Input Files 

2.5.1 Input files  

Required (always) files in the working directory: 

 aga.sh : a bash script that connects every part of the search: GA, VASP, and POTFIT, which is used 

to run the jobs. 

 Note – To run the code in a parallel manner, a machine file with the CPU information, named as 

nodes is needed. If your computer system does not write such information, please contact us for an alter 

solution. 

 

 ga.in : contains all the general parameters to set up a search. Format: 

parameter1 = value1 

  … 

  parameterN = valueN 

 Note – parameter’s order does not matter; 

  “=” must be separated by space from both the parameter’s name and value; 

  unrecognized parameters will be ignored, therefore note can be added anywhere. 

 

Required files for classical potential GA searches: 

pot.in & pot.lammps: classical potential files used while calling LAMMPS; pot.in contains the 

LAMMPS command and pot.lammps is the tabulated potential. 

If analytical potential forms are supported by LAMMPS, then all the parameters can be put in pot.in, 
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in which case, pot.lammps can be omitted. 

 

Required files for first-principles GA searches: 

vaspfiles/ : a folder containing the files needed by VASP (INCAR, POTCAR, KPOINTS) to do 

first-principles calculations. 

 

Required files for AGA searches: 

 vaspfiles/ : a folder containing the files needed by VASP (INCAR, POTCAR, KPOINTS) to do 

first-principles calculations. 

 

 pot.in & pot.lammps: classical potential files used while calling LAMMPS; pot.in contains the 

LAMMPS command and pot.lammps is the tabulated potential. 

    If analytical potential forms are supported by lammps, then all the parameters can be put in pot.in, 

in which case, pot.lammps can be omitted. 

 

 potfit.in : input file for potential fitting; contains the parameters used by POTFIT. 

 

 mypot_start: input file for potential fitting; contains the classical potential form used in the AGA 

search and fitted by POTFIT. It must be supported by POTFIT. 

  (http://potfit.sourceforge.net/wiki/doku.php?id=potential_files) 

 

While studying different systems, additional information might be required. 

http://potfit.sourceforge.net/wiki/doku.php?id=potential_files
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Required files for the interface or surface problem: 

 fixed_atoms.in : contains the lattice and coordinates of the atoms whose positions are fixed or 

treated as rigid body.  

Format: 

  N1    ! number of atoms above the interface (top atoms) 

  a1 a2 a3    ! coordinates of a 

  b1 b2 b3    ! coordinates of b 

  c1 c2 c3    ! coordinates of c 

  x y z type1  ! coordinates of atom #1 and its type 

  … 

  x y z typeN1  ! coordinates of atom #N1 and its type 

  N2      !number of atoms below the interface (bottom atoms) 

  a1' a2' a3'    ! coordinates of a' 

  b1' b2' b3'    ! coordinates of b' 

  c1' c2' c3'    ! coordinates of c' 

  x y z type1  ! coordinates of atom #1 and its type 

  … 

  x y z typeN2  ! coordinates of atom #N2 and its type 

 All positions are in Cartesian coordinates. If there is no top atom (surface problem), set N1 to 0 and 

followed by the bottom atoms (see example: TiO2-110surface or SrTiO3-GB). 

 The relative positions of the fixed/rigid atoms and the interface/surface atoms in the z direction are 

not important. After reading in the atom positions in fixed_atoms.in, they will be re-organized as in the 

model [28]. 

 For more information on setting the types of the atoms, please see the explanation on ntype in ga.in. 
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 latt.in : contains the lattice parameters for the surface or interface region. Typically, a, b are the 

same as the lattice in fixed_atoms.in (see example: TiO2-110surface or SrTiO3-GB). 

Format: 

  scale     ! scale of lattice vectors 

  a1 a2 a3    ! coordinates of a 

  b1 b2 b3    ! coordinates of b 

  c1 c2 c3    ! coordinates of c 

 The resulted lattice parameters will be a, b, c multiplied by the scale. 

 

Required files for cluster structure searches: 

 latt.in : contains the box information which should be large enough to avoid the effect of periodic 

boundary conditions.  

Format is the same as explained above. 

 

Optional input files: 

latt.in : contains the unit cell information that is used to generate the initial population. If the unit 

cell is fixed throughout the whole search, please set parameter cellfree in ga.in to 0.  

Format is the same as explained above. 

 

 ilmp.in : to initialize the LAMMPS object.  

If classical potential calculation by LAMMPS is involved, ilmp.in will be automatically generated 

by the GA code while starting the run. If ilmp.in already exists in the working directory, the code will 
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read the given file, instead of writing out a new one. Customization can be made in ilmp.in to initialize 

LAMMPS as needed. 

 

 pool.in : initial population. If restart in ga.in is set to 1, the search will start from the given 

population stored in pool.in. Format of pool.in is the same as the output pool file, e.g. results.pool. 

 

 pool_vec.in : the relative positions between the top rigid bulk and bottom fixed bulk of the initial 

population. It is needed when searching for interface and both movetop and restart in ga.in are set to 1. 

Format of pool_vec.in is the same as the output vector file, e.g. vec.pool. 

 

 site.in & pos.in : to initialize the population with given site information. 

Together with fixsite in ga.in being set to 1, fixed site search will be performed, meaning that the 

search will be performed with fixed atom positions and only the decorations of the sites will be 

optimized. 

The coordinates are Cartesian in pos.in and Direct in site.in. 

 Format: 

  N      ! # of atoms 

  x y z type1  ! coordinates of atom #1 and its type 

  … 

  x y z typeN  ! coordinates of atom #N and its type 

 Note – when the atom type of certain sites is not fixed, please set it to 0. During the search, those 

sites can by occupied by any possible type. For more information on setting the types of the atoms, 

please see the explanation on ntype in ga.in. 
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 comp.in : contains the compositions to be run when performing multiple-composition search. For 

more information, please see the explanation on parameters maxnatom and minnatom in ga.in.  

 Format: 

  0 4 5   ! for compositions A4B5 

  0 2 7   ! for compositions A2B7 

  ... 

 

2.5.2 Parameters in the input files 

aga.sh : 

 It allows one argument to represent current generation or iteration, so output from previous 

iterations will be not overwritten while running AGA. 

 e.g. to start from iteration #5, run: ./aga.sh   5 

ga.in : 

Required parameters 

system : integer; 0=crystal; 1=cluster; 2=interface/surface 

 cstation : integer; number of stations to perform classical potential calculations 

 dstation : integer; number of stations to perform first-principles calculations 

 e.g. n(CPU) = 16, station = 8, then 8 structures are calculated simultaneously and each structure is 

calculated by n(CPU)/station = 2 CPU’s. 

 cpool : integer; pool size for the classical potential search 
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 dpool : integer; pool size for the first-principles GA search, OR, number of structures selected to do 

first-principles calculation in order to obtain force, energy and stress information for POTFIT (when 

running AGA) 

 cgen : integer; number of generations for the classical potential search 

 dgen : integer; number of generations for the first-principles GA search, OR, number of iterations 

for AGA search 

 Note – If cgen = 0, and dgen = non-zero, first-principles search will be performed, in which case, 

the values of cstation and cpool do not matter; 

If dgen = 0, and cgen = non-zero, classical potential search will be performed, in which 

case, the values of dstation and dpool do not matter; 

   If dgen = no-zero and cgen = non-zero, AGA search will be performed.  

natoms : integer; total number of atoms 

ntype : integer; number of atom species 

Note – The first type is reserved for vacancy. In current version of the code, maximum number of 10 

species (including the vacancy) can be considered. 

Atoms with type larger than 10 are treated as fixed atoms, with real type = type(atom)%10; 

Atoms with type larger than 20 are treated as rigid body (for example in the case of interface), with 

real type = type(atom)%10. 

 atomn : array of integers; number of atoms of each atom species. e.g. while searching for A4B8, 

then, 

 atomn = 0    4    8 

 Note – First element is reserved for vacancy. 

 



19 

 

Optional parameters 

e1conv : double; tolerance for the minimum energy change of the population while checking the 

convergence of search 

e2conv : double; tolerance for the average energy change of the population while checking the 

convergence of search 

n1conv : integer; criteria used to check the convergence of the minimum energy of the population 

n2conv : integer; criteria used to check the convergence of the average energy of the population 

Default: e1conv = e2conv = 1e-5; n1conv = 1000, n2conv = 0 

Note – A GA search reaches convergence, if the minimum energy of the population remains 

unchanged (ΔE < e1conv) for n1conv generations and at the same time the average energy of the 

population remains unchanged (ΔE < e2conv) for n2conv generations. 

By default, the search converges if the minimum energy of the population converges, because 

n2conv = 0. 

maxnatom : array of integers; represents the maximum number of atoms for each type 

minnatom : array of integers; represents the minimum number of atoms for each type 

 Note – The first element of the array is saved for vacancy. If there is no vacancy, then set the first 

number to zero. 

If maxnatom = minnatom, only one composition will be searched; otherwise, all possible 

compositions will be searched at the same time, e.g. for a binary A-B system,  

 natoms = 12 

 ntype = 3 

maxnatom = 0 7 8 
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 minnatom = 0 4 5  

 The compositions A4B8, A5B7, A6B6, A7B5 will be searched. The two arrays satisfy minnatom[1] = 

natoms – maxnatom[2], minnatom[2] = natoms – maxnatom[1]. 

The pool size should be set to an integer*N(composition), so that the pool can be divided into 

correct groups.  

If comp.in is given, only those in comp.in will be searched, instead of all allowed compositions from 

the setting of maxnatom and minnatom. 

pmut : double; mutation probability 

 Default = 0.05 

rcut : double; a critical distance used to generate new structures in which the minimum bond length > 

0.75*rcut; also used to create bond table of structures while comparing the similarity of the structures 

(cutoff to create the neighbor list = 4*rcut). 

 Default = 1.5 Å 

criteria : double; tolerance used to check the similarity of the structures 

 Default = rcut/8 Å 

Note – it is recommended to set rcut and criteria according to the system to be studied.  

config2use : integer; number of configurations to be used in POTFIT. If not given or bigger than 

dpool, it will be set to dpool, meaning that all the DFT calculated structures are used. 

aenergy : array of doubles; atom energy for each type of atoms used to calculate cohesive energy. 

 Default = {0.0} eV 

avolume : array of doubles; volume occupied by each type of atoms in the initial structures. 

 Default = {15.0} Å^3 
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 Note – Volume of the unit cell will be calculated as: 𝑉 = ∑ 𝐚𝐯𝐨𝐥𝐮𝐦𝐞[𝑖]𝑖  

 If latt.in is given, and avolume is non-zero, the volume of the unit cell in latt.in will be rescaled. So 

if lattice parameters in latt.in are expected to be fixed, please set avolume = {0.0}. 

 amass : array of doubles; atom mass of each atom species used for running MD. If no MD 

simulation is involved, its number does not matter. 

 Default = {10.0} 

maxangle : double; maximum angle for the unit cells of initial population 

 Default = 120˚ 

minangle : double; minimum angle for the unit cells of initial population 

 Default = 60˚ 

press : double; pressure applied during the search 

 Default = 0 Kbar 

 restart : integer; if 0, start a new search; if non-zero, start from structures in pool.in.  

 Default = 0 

id : integer; starting id that the structures are labeled 

Default = 100000000 

 cellf : double; factor to determine the lattice parameters of the unit cells of initial population, if 

latt.in is not given. 

  
√𝑉

3

𝑐𝑒𝑙𝑙𝑓
< 𝑐 < √𝑉

3
∗ 𝑐𝑒𝑙𝑙𝑓; √𝑉/𝑐/𝑐𝑒𝑙𝑙𝑓 < 𝑏 < √𝑉/𝑐 ∗ 𝑐𝑒𝑙𝑙𝑓 ; 𝑎 = 𝑉/𝑏/𝑐 

 Default = 2.0 

 recalce : integer; if non-zero, energies will be re-calculated after reading the initial population from 
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pool.in. 

 Default = 0 

 pot : string; if coulomb potential is used as the classical potential, please set it to “coul”; for most of 

other classical potential types, it can be omitted. 

 cellfree : integer; ways to update the positions of atoms in classical calculations 

     If = 0, no cell relaxation 

     If = 1, isotropic cell relaxation 

     If = 2, anisotropic cell relaxation 

     If = 3, all free cell relaxtion (Default) 

 Note – To achieve different relaxation schemes in first-principles calculations, please refer to the 

settings in VASP. 

fixsite : integer; To fix the atom positions during the search, please set it to non-zero. 

 Default = 0 

nfixed : two integers;  

  nfixed = N(top fixed atoms)   N(bottom fixed atoms) 

 Default =  0  0 

movetop : integer; if 0, the top fixed atoms will not move; if non-zero, the top atoms will be moved 

as a rigid body.  

 Default = 0 

bot2interface : double; indicates the closest distance along z direction between the bottom fixed 

atoms and z=0 plane. 

 Default = 0.5 Å 
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Note – The atoms in the interface/surface region start from z=0. 

vacuum : double; height of the vacuum added for running interface/surface  

 Default = 20 Å 

mdsteps : integer; number of steps for MD run to update positions of atoms 

 Default = 0 

     = 5000, If system = 2 and movetop = 1 

Note – To move the top fixed atoms as a rigid body while running interface, MD simulation is used. 

 If pot = coul, and mdsteps is set to non-zero, MD will be also used while locally relaxing the 

structures by LAMMPS instead of ‘minimize’.  

 For input parameters of VASP, POTFIT, please refer to the corresponding manuals. 
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2.6 Output and Data Collection 

2.6.1 Output files 

ga.out : Log file of the GA search 

results.pool : structure information of current population. Format:  

e.g. for a system with N atoms per structure and M species 

 Nstr  N(atoms)  Current_ID 

 ID: id1   energy1   pressure1   n(vac)   n(type1) …  n(typeM) 

 a[1]  a[2]  a[3] 

 b[1]  b[2]  b[3] 

 c[1]  c[2]  c[3] 

 pos1[1]  pos1[2]  pos1[3]  type1 

 … 

 posN[1]  posN[2]  posN[3]  typeN 

 ID: id2   energy2   pressure2   n(vac)   n(type1) …  n(typeM) 

 … 

 

results.pool0 : structure information of updated population. 1/4 of the structures in the pool are newly 

generated, whose energies have not been calculated and set to 9999.0. Format is the same as 

results.pool. 

 

If first-principles GA search is performed, the progress can be monitored from the log.ga file. 

 

If AGA search is performed, after iteration i is finished, the output files will be stored as filename_i.  
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filename= ga.out : the log file from GA of iteration i 

  = classical_pool : copied from results.pool of iteration i 

       = dft_pool : pool of structures extracted from first-principles calculations; the ID in the dft_pool 

corresponds to the structures in classical_pool 

       = potential : the classical potential used in the GA search of iteration i 

       = my_apot : the analytical potential form used in the GA search of iteration i 

       = potout : the log file from POTFIT 

       = config : the configuration file extracted from the first-principles calculations 

       = pot.config : the configurations used in POTFIT. It contains a subgroup of configurations in 

config (see the explanation on config2use in ga.in). 

 Progress of the AGA search can be monitored through the log.aga file. 

 

If running interface and movetop in ga.in is set to 1, 

 vec.pool : the relative positions between the top rigid bulk and bottom fixed bulk of the structures in 

results.pool.  

 Format: 

Nstr 

ID: id1   v1[1]    v1[2]    v1[3] 

… 

ID: id   Nstrv   Nstr[1]    vNstr[2]    vNstr[3] 

 

 vec.pool0 : the relative positions between the top rigid bulk and bottom fixed bulk of the structures 

in results.pool0. Format is the same as vec.pool. 



26 

 

 

2.6.2 Data collection and analysis 

For classical potential or first-principles searches, unless multiple runs were performed, data collection 

would not be relevant; however, the following explanation on data analysis is still applicable. 

To collect the structure results of AGA search 

Run: 

 cp    -r    tools/collect/      work_directory/ 

 cd     collect/ 

 ./collect.sh     i(pool)    j(pool)    criteria 

It will collect the dft_pool_* from dft_pool_i to dft_pool_j. “criteria” has the same meaning as the 

parameter criteria in ga.in, which is the tolerance to check the similarity of the structures. 

Output: 

pool.all : contains the collected results after labeling the energy of the same structures to 9999.0 and 

being sorted by energy. How many structures are deleted can be found in gaout. 

e_vs_iter.dat : data of DFT energies vs. iteration 

 

To analyze the structures 

First, the collected structures need to be fully relaxed by first-principles method. prep_vasp.sh in 

/tools/analyze/ converts a structure pool to POSCAR format for VASP calculations. 

 prep_vasp.sh    Name(pool)    n(structures to convert) 

 Output: POSCAR_1, …, POSCAR_n 

Note – The source code reformatpool.cpp in /tools/ is called. 
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After the n structures are relaxed, put OUTCAR_1 … OUTCAR_n and POSCAR_1 … POSCAR_n 

together and run vasp2pool.sh in /tools/analyze/: 

 vasp2pool.sh     n(POSCAR)    n(species)     Name(output pool) 

 Output: a structure pool named as “Name(output pool)” in results.pool format 

Note – The source code poscar2pool.cpp in /tools/ is called. 

 

To check the symmetry of the structures in a pool file, run check_sym.sh in /tools/analyze/: 

 check_sym.sh    Name(pool)     n(structures to check)    tolerance 

 Output: str_1.cif, …, str_n.cif 

Note – To check the symmetries, the FINDSYM toolkit is used. 

(http://stokes.byu.edu/iso/isolinux.php) 

 

Other tools 

reformatpool.x : convert the structures in pool file to other format, such as .xsf (to plot by VESTA), 

poscar (VASP), and findsym input data. 

If fixed_atom.in is present, it will output the structures including the atoms of the top/bottom bulks. 

pool2xyz.x : convert the structures in pool file to .xyz format, mainly used for plotting clusters. In 

the output, the atoms are gathered around the origin. 

selectconfig.x : select config2use (set in ga.in) configurations to do POTFIT based on energy order. 

vasp2force : script from POTFIT package to extract configuration files from VASP results. 

vasp2force5 is modified to work with VASP 5. 

http://stokes.byu.edu/iso/isolinux.php
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3. Frequently Asked Questions (FAQ) 

 

To be added. 

 

 

4. Contact and Bug Reports 

 

    If you are interested in our AGA code, please contact aga@ameslab.gov. We are also grateful for 

suggestions, reasonable feature requests, bug reports, or general feedback.  
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6. Appendix 

 

6.1 Examples 

A few examples are provided to help users understand how the AGA scheme works and the meaning of 

the parameters. 

1. dft-Fe7W6/ : example of a first-principles search 

2. Fe7W6/ : example of an AGA search for binary alloy 

3. TiO2/ : example of an AGA search for binary oxide 

4. B2Co3Zr/ : example of an AGA search for ternary alloy 

5. TiO2-110surface/ : example of an AGA search for surface 

6. SrTiO3-GB/ : example of an AGA search for grain boundary/interface 

 

 

 

 

 

 


