首页 鸿研 需求 视频 产品 专栏 招聘 活动 社区 APP下载 登录/注册
通过调节多硫离子吸附来设计高效锂硫电池催化剂
材料人测试客服小陈     2022-06-30 微信扫码分享 登录后可收藏  
应用场景:
锂硫电池
关键性能:
由此开发的Co0.125Zn0.875S表现出比简单二元化合物更高的催化活性
产品介绍:

据中科院官网报导,近日,中国科学院过程工程研究所资源化工与能源材料研究部研究员张会刚与美国阿贡国家实验室博士陆俊合作发现了通过调节多硫离子吸附来设计高效锂硫电池催化剂的规律,并验证了多硫离子吸附与催化活性之间的“火山型”关系,为理解原子和分子水平的催化过程和设计更高效的锂硫催化剂提供了方案。研究团队基于d带调控锂硫催化剂设计思路(ACS nano 2020, 14, 6673-6682;Adv. Funct. Mater. 2020, 30, 1906661)的进一步扩展和总结,通过一系列3d金属掺杂ZnS,调整活性位点的d带中心,从而精确调控催化剂对多硫离子的吸附能力。多硫离子吸附与催化活性之间的“火山型”关系被实验和理论计算加以验证,产生火山规律的根源在于过强吸附抑制了产物脱附。由于锂硫电池初始和终态产物是固体,容易钝化催化剂位点,该研究设计合理实验发现了强吸附导致的“钝化”现象,为理性设计锂硫电池提供了机理性认识,由此开发的Co0.125Zn0.875S表现出比简单二元化合物更高的催化活性。通过一系列3d金属掺杂ZnS,研究能够实现对活性位点d轨道的连续调控,从Cu掺杂到Mn掺杂,d带中心上移,吸附能不断增强。晶体结构分析表明,吸附增强使得金属-硫键变短,硫-硫键被拉长弱化,对应的差分电荷密度图中金属-硫键上产生了更多的电子转移。对称电池和不同温度下的CV表征催化性能,从Cu掺杂到Mn掺杂,催化性能并没有呈现随吸附增强不断提升的趋势,而是呈现出先升高后下降的“火山型”规律。当Co掺杂ZnS时,具有最优的催化性能。研究提供了设计锂硫电池催化剂的理性认识基础,通过揭示钝化现象以及强吸附对催化过程的影响,解释了计算结果和实验不一致的原因。相关研究成果于发表在Nature Catalysis上。

产品来源:
评分:暂无评分

暂无评论
材料人测试客服小陈发布的产品
方法 相关的产品