首页 鸿研 需求 视频 产品 专栏 招聘 活动 社区 APP下载 登录/注册
应用场景:航空航天和汽车工业
关键性能:微乳液3D打印制备的含油自润滑复合材料的摩擦系数从没有润滑剂的约0.404降低到约0.069,几乎翻了10倍
标签属性:3D打印
应用场景:纳米复合材料制造
关键性能:一种复合结构中尺度工艺(CAMP)策略,不仅可用于碳纳米材料的可扩展组装策略,还可以通过将基体成分(热固性材料、金属和陶瓷)纳入结构和功能材料的设计和应用,来提高混合材料的机械性能。
标签属性:碳材料 增材制造
应用场景:增材制造
关键性能:通过SLM在金属复合材料中引入晶内分散结构来实现将GBs和强化物引起的应力集中解耦,得到的TiB2-Al复合材料的抗拉强度提高了30%,延展性提高了近三倍。
标签属性:复合材料
应用场景:合金设计
关键性能:Ti-xAl-4V合金(x = 4,6,8, wt.%)合金强度随Al含量的增加而增加,由于Ti44中多种滑移模式的激活和Ti84中更为异质的微观结构,Ti44和Ti84都比Ti64具有更高的加工硬化和均匀延伸值。
标签属性:钛合金
应用场景:3D打印
关键性能:实现了样品高度>410mm的棒状和角状共晶陶瓷的一步制备和无裂纹形成
标签属性:3D打印
应用场景:3D打印
关键性能:开发了一种三维(3D)打印的微型热电装置,可以在微观尺度上直接进行四维(3D空间+时间)温度测量,空间分辨率达微米级,可用于探索焦耳加热或蒸发冷却的动力学。
标签属性:3D打印
应用场景:3D打印
关键性能:一种高通量组合打印方法,它能实现原位混合和打印,以微米级空间分辨率快速调整各种材料的混合比例,从而制造出具有组成梯度的材料
标签属性:3D打印
应用场景:压电驱动器和传感器
关键性能:基于该技术可以实现从982mPs·s到383,135mPs·s宽粘度范围的打印(固含量28—50vol%),烧结致密度接近于同材质干压成型的样品,展现出非常优越的打印性能及应用便利性
标签属性:3D打印
应用场景:玻璃
关键性能:生物分子玻璃表现出较高的生物相容性、生物可降解性和生物循环再利用特性
标签属性:玻璃 可再生
应用场景:增材制造
关键性能:巧妙的将机器学习应用于4D打印材料的开发中,突破了传统工艺
标签属性:机器学习 增材制造
应用场景:增材制造高性能钛合金设计
关键性能:从只含α′相时的1.2 GPa提高到α′相和FCC相体积分数基本相等时的1.9 GPa
标签属性:钛合金
应用场景:增材制造
关键性能:优异的强度和延展性(抗拉强度271 MPa,断裂伸长率43.5%,均匀伸长率30%),同时解决了传统冷喷涂脆性的局限问题,进一步提升了纯铜这一传统材料的强韧性
标签属性:增材制造
应用场景:金属3D打印
关键性能:研究结果表明位错胞状结构的强化机制不能单纯用Taylor公式或者Hall-Petch公式解释
标签属性:金属3D打印 晶体 金属
应用场景:3D打印
关键性能:利用熔融石英组件的微尺度计算轴向光刻Micro-CAL,通过断层扫描照射光聚合物-二氧化硅纳米复合材料,然后再烧结,用以合成精细玻璃部件。制作备了内径为150微米的三维微流体构件,表面粗糙度为6纳米的自由曲面微光学元件,以及最小特征尺寸为50微米的复杂高强度桁架和点阵结构。进一步创建了光学组件,桁架和晶格结构,以及三维微流体结构。作为一种高速、无层的数字光制造工艺,微尺度计算轴向光刻Micro-Cal,可以加工高固体含量和高几何自由度的纳米复合材料,实现新的器件结构和应用。这种增材制造技术,足够灵活,可以为许多不同应用,提供各种高质量的玻璃部件。
标签属性:3D打印
应用场景:陶瓷增材制造
关键性能:用于分析研究立体光刻(SLA)零件的成型质量;发现前驱体陶瓷浆料在增材制造过程中存在固化缺陷,并提出了改善方法
标签属性:增材制造
应用场景:增材制造
关键性能:高纯度、高密度纳米孪晶和纳米晶的按需调控;成型速度提高400倍以上
标签属性:3D打印
应用场景:合金设计与制造
关键性能:实现了以Fe元素为主的微米级成分梯度
标签属性:3D打印 science
应用场景:镁合金、增材制造
关键性能:合金强度和塑性同时显著提升
标签属性:镁合金
应用场景:3D架构多陶瓷超材料
关键性能:通过立体光刻增材制造设计和制造具有负、零( 和正的3D结构陶瓷超材料
标签属性:3D打印
应用场景:镁合金的工程结构应用和生物镁合金的应用
关键性能:在Mg-NiTi互穿相复合材料中同时获得高强度、高阻尼能力、良好的能量吸收效率和显著的自恢复能力
标签属性:3D打印仿生镁合金
共 25 条   1/2页   首页   前页   后页   末页
我要发布产品
最新评分
热门标签
催化 电池 钙钛矿 3D建模 水凝胶 3D打印 柔性电子 石墨烯 燃料电池 机器学习