首页 鸿研 需求 视频 产品 专栏 招聘 活动 社区 APP下载 登录/注册
应用场景:全钒液流电池
关键性能:将电解液凝固点有效降低到-20℃以下,协同提升了铁负极电化学可逆性,实现了全电池在-20℃低温条件下100小时稳定运行
标签属性:全钒液流电池
应用场景:钠离子电池正极材料
关键性能:NFPP-4.5的可逆容量达130 mAh/g,能量密度达400 Wh/kg
标签属性:钠离子电池
应用场景:电解液
关键性能:PhH-LHCE支持正极负载为9mg/cm2的NCM811-Li电池稳定循环450次,容量保持率为87.3%
标签属性:电解液
应用场景:制氢
关键性能:在模拟海水环境中,该体系可以在1.6A的工业电流下稳定运行超过100小时
标签属性:催化
应用场景:水系锂离子电池
关键性能:在较高含水量(>25%)的10m LiTFSI电解液中,Li3PO4的形成在不额外的消耗来自正极的Li+和电子的情况下,也可以有效地阻止了负极H2的析出,从而降低了高电压水系锂离子电池所需要的水系电解液盐浓度的阈值
标签属性:锂离子电池
应用场景:多层次多孔电极
关键性能:大孔通道极大促进了锂氧电池中的离子传输和气体扩散,提升了电池的电化学性能,首圈放电比容量高达20658 mAh/g
标签属性:电化学
应用场景:电催化
关键性能:在总电流为400A时,Cu6Sn5合金上NO电还原产氨速率达到2.5molh-1
标签属性:电催化
应用场景:海水电解
关键性能:可以实现超过5000或2500小时的稳定性
标签属性:海水淡化
应用场景:电解液的使用和实际电池制造工艺
关键性能:处理后的石墨电极的初始库仑效率为129.4%,在3 C下的高容量为170 mAh g-1,在1 C下200次循环后的容量衰减可以忽略不计
标签属性:电池 电解液 电解质
应用场景:催化剂
关键性能:该催化剂在2 ppm氨存在条件下电化学循环1万次性能几乎没有损失,而铂碳催化剂性能损失严重。在实际的碱性膜燃料电池中,以该催化剂作为阳极组装的器件在10 ppm氨存在下可保留95%的初始峰值功率密度。相比之下,铂碳催化剂的功率输出则降低至初始值的61%
标签属性:催化 燃料电池
应用场景:海水电解
关键性能:Cl-有更低的扩散势垒,更易扩散进入基底钝化层进行腐蚀,而Br-与钝化层反应的自由能更低,倾向于多位点快速腐蚀
标签属性:腐蚀
应用场景:高功率电子器件、大电流传输
关键性能:CuI@SWCNT薄膜相较于SWCNT薄膜具有更优的电导率和更强的载流能力,其载流能力提升4倍,达到2.04×107 A/cm2,电导率提升8倍,达31.67 kS/m
标签属性:薄膜
应用场景:锂金属电池
关键性能:在快速循环条件下(充电:1.46mA/cm2,放电:3.66mA/cm2),软包电池在100次循环后的容量保持率为81%
标签属性:锂金属电池
应用场景:催化
关键性能:通过等离子体处理方法调节具有不同氧空位含量的羟基氧化铟纳米片(OV ),富含OV的样品(InOOH-OV)被证明是电化学CO2RR优于增值甲酸盐的双功能催化剂,最大FE和电流密度分别为92.6%和56.2mA cm-2,以及HMFOR到FDCA的生物质稳定化过程,产率为91.6%。
标签属性:催化
应用场景:钙钛矿太阳能电池
关键性能:非晶ZrNx阻挡层的a-c界面量化及其阻挡特性;非晶ZrNx的防腐性能和化学稳定性提升;非晶ZrNx抑制电极腐蚀和钙钛矿退化;器件稳定性提升
标签属性:钙钛矿太阳能电池
应用场景:析氯
关键性能:在有CO2存在的情况下,它在只有89 mV的过电位下实现了10 kA/m2的电流密度和6%的选择性。
标签属性:催化
应用场景:清洁能源
关键性能:在快速充电水溶性有机氧化还原液流电池中具有高效能量效率和高容量利用率的高效膜,同时在极高的电流密度(高达500 mA cm–2)下避免了交叉渗透引起的容量衰减
标签属性:膜材料
应用场景:器件储能实时监测
关键性能:克服了无机材料变色单一的固有缺陷,同时该材料在经过1500圈循环测试后,CV曲线包络面积保持最初的99.62%,3000圈测试后,光学调制幅度保持最初的112.12%,说明材料循环稳定性良好,具有更好的实用性。
标签属性:普鲁士蓝
应用场景:制备高性能富镍单晶正极
关键性能:一种全新的行星式离心解聚技术,该技术可以从自制或市售的共沉淀前体中大规模生产具有优异电化学性能和稳定性的微米级富锂/锰和富镍组合物的单晶正极。
标签属性:锂离子电池
应用场景:健康监护、智慧医疗
关键性能:优异导电性、机械柔性、增强电子/离子/分子传输的三维互通结构、更大活性位点
标签属性:可穿戴 石墨烯
共 206 条   1/11页   首页   前页   后页   末页
我要发布产品
最新评分
热门标签
催化 电池 钙钛矿 3D建模 水凝胶 3D打印 柔性电子 石墨烯 燃料电池 机器学习